How number processing survives left occipito-temporal damage
نویسندگان
چکیده
We investigated the neural systems that support number processing in a patient (JL) who had damage to the left ventral occipito-temporal cortex (LvOT). JL had severely impaired written word recognition but he was remarkably accurate in number tasks, albeit slower than normal. This suggests LvOT activation is necessary for efficient but not for accurate number decisions. Here we investigated how JL made accurate number decisions using fMRI; we compared JL's brain activation to that in healthy controls and in two patients with frontal lobe damage who, like JL, made slow but accurate responses in number tasks. For semantic relative to perceptual decisions on numbers, JL did not activate the left occipito-temporal area that was involved in all other subjects. However, JL had significantly increased activation in a left posterior middle temporal region. In addition, during semantic and perceptual decisions on numbers, JL showed increased activation in: (1) the right occipito-temporal cortex, (2) right caudate, and (3) bilateral frontal regions. These effects were unique to JL and cannot be explained in terms of abnormally long response times because they were not observed in the other patients who made slow but accurate number decisions. Together these results show that although the LvOT usually contributes to efficient number processing, activation in this region is not essential for accurate performance because (i) perceptual processing of numbers can be supported by right occipital, right caudate, and bilateral frontal activation and (ii) semantic processing of numbers can be supported by increased left posterior middle temporal activation associated with hand actions.
منابع مشابه
Numbers are not like words: Different pathways for literacy and numeracy
Literacy and numeracy are two fundamental cognitive skills that require mastering culturally-invented symbolic systems for representing spoken language and quantities. How numbers and words are processed in the human brain and their temporal dynamics remain unclear. Using MEG (magnetoencephalography), we find brain activation differences for literacy and numeracy from early stages of processing...
متن کاملInter-subject variability in the use of two different neuronal networks for reading aloud familiar words
Cognitive models of reading predict that high frequency regular words can be read in more than one way. We investigated this hypothesis using functional MRI and covariance analysis in 43 healthy skilled readers. Our results dissociated two sets of regions that were differentially engaged across subjects who were reading the same familiar words. Some subjects showed more activation in left infer...
متن کاملImpaired fear processing in right mesial temporal sclerosis: a fMRI study.
Lesion and neuroimaging studies have demonstrated that the mesial temporal lobe is crucial for recognizing emotions from facial expressions. In humans, bilateral amygdala damage is followed by impaired recognition of facial expressions of fear. To evaluate the influence of unilateral mesial temporal lobe damage we examined recognition of facial expressions and functional magnetic resonance (fMR...
متن کاملEfficient Visual Object and Word Recognition Relies on High Spatial Frequency Coding in the Left Posterior Fusiform Gyrus: Evidence from a Case-Series of Patients with Ventral Occipito-Temporal Cortex Damage
Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage t...
متن کاملDyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex
fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called "visual word form area", VWFA), is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2012